skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weller, Amanda K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dehnel’s phenomenon describes a seasonal and reversible winter decrease in body size, which is a trait that predicts total energy demand. However, the phenomenon remains less well- studied than common energy-saving or energy-seeking strategies of mammals. Here, we explore the generality of Dehnel’s phenomenon in Sorex shrews on three continents. First, we use new field sampling to document seasonal phenotypic change in masked shrews (Sorex cinereus) in North America at the lowest latitude yet investigated for this species (35.7°). This includes the first documentation of appendicular skeleton remodification in Sorex. Summer-to- winter decreases in S. cinereus body mass, braincase height, and femur length were 13%, 11.5%, and 8.7%, respectively, with subsequent increases of each in second-year individuals. Second, we compile a comprehensive dataset of Dehnel’s-relevant studies to test whether seasonal plasticity in Sorex globally is related to climate, demonstrating that body and braincase plasticity are functions of cold season temperatures. Meta-analytical models for both these traits generalized by a) applying at both inter- and intraspecific scales, and b) predicting the seasonal change newly observed for S. cinereus. Our results support body size plasticity as an environmentally-responsive innovation in these very small, homeothermic mammals. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026